pre closely the actuas f. Figure 10(b) gives nich is to be compared g. 10(a). The agree ependence of $W_{11}-1 ;$ i by the above assignt: tructure in W_{44}, we : because the structure egion. The main difiere: 2) and the FS $\rightarrow L_{1}$ tra e original contributions e truncated by the Fs. energy are shown fo: ce $L_{1}-L_{2}^{\prime}$ in a plane i density of states atc. wn in Fig. 11. The en nall compared to L_{1-} L_{1} are also used to de: es for typographical c ariation of J in the re. n by
$n_{1}\left(\hbar \omega-L_{1}+E_{F}\right)^{1 / 2}$.
re neck was approxima J as given by Eq. (6 than $L_{1}-E_{F}$. The s! cause of lifetime broal ${ }_{i j}$ will thus occur at rovided $W_{i j}$ is caused ϵ_{2}. Figure 11 and Eq. ions are strongly locali cors terminate in a re.
ons $L^{d} \rightarrow \mathrm{FS}$ termin asitions are not localiz xpect a change in ϵ. pear strain, and we exy experiments show a ${ }_{12}$ at the same energ: X_{4}^{\prime} transitions near racy mentioned abo: is most probably due -1 transitions.
i the momentum mat: ons of interest here, given in Table IV. ' $\rightarrow L_{1}$ transition is m ! originating from $d b$ tillips ${ }^{29}$ found that ab 3 eV is due to the transitions. The act ir due to lifetime bro the height of the sh: a these transitions (F
(1958).

Phys. Rev. 157, 600 (19

Table IV. Transition matrix elements in (Ry) for selected transitions.

[ransition ${ }^{\text {s }}$	$L_{2}{ }^{\prime} \rightarrow L_{1}$	$L_{1}{ }^{d} \rightarrow L_{2}{ }^{\prime}$	$L_{3}{ }^{\text {b }} \rightarrow L_{2}{ }^{\prime}$	$X_{5} \rightarrow X_{4}^{\prime}$
$2 P_{\text {Pij }}{ }^{2} / m$	3.17	0.533	0.015	0.250

-The matrix elements are calculated using the eigenvalues given in (f. It [F. M. Mueller (private communication)].
(1). From the experimental ϵ_{2} we estimate a total stribution of about 30%, extrapolating the contribun of the background below 4.1 eV to about 4.65 eV . The high percentage of $L_{2}^{\prime} \rightarrow L_{1}$ transitions as calcuated from theory is consistent with the pronounced arge in the experimental ϵ_{2} and with the large W_{44} as well. This leads again to the conclusion that the obcwed structure in ϵ^{2} and $\Delta \epsilon_{2}$ at 4.3 eV is caused by the $: S \rightarrow L_{1}$ transition.
Another striking feature of the functions $W_{i j}$ is the rastly different magnitude of W_{44} and $W_{11}-W_{12}$. The -aximum $\Delta \epsilon_{2}$ observed for trigonal shear strain is nine times the corresponding value for tetragonal shear train (the amount of the strain being the same). This is artly due to the different degree of localization in k pace discussed above and partly to the difference in e oscillator strength (Table IV). The small oscillator trength for $X_{5} \rightarrow X_{4}^{\prime}$ as compared with the one for $L_{2}^{\prime} \rightarrow L_{1}$ suggests that there is no pronounced structure $\rightarrow \epsilon_{2}$ around 4.0 eV , and indeed the experimental curve s nearly flat in this region. However, we believe to have esolved a tiny hump in our room-temperature measurewents of ϵ_{2}, as shown in Fig. 12. The reflectance at quid He temperatures ${ }^{30}$ shows a well-resolved structure it about the same energy. The transition does show up dearly as a minimum in $W_{11}-W_{12}$ at room temperature. The hydrostatic change ($W_{11}+2 W_{12}$) and the change with trigonal shear strain (W_{44}) have the same shape setween 4 and 4.5 eV . The position of the maximum is 4.3 eV in both cases. This suggests that both effects se due to the FS $\rightarrow L_{1}$ transition. The two functions liffer between 4.5 and 5 eV , where $W_{11}+2 W_{12}$ exhibits in additional shoulder around 4.8 eV , whereas W_{44} approaches zero rapidly. This behavior can be explained assuming transitions from the bottom of the d tands to the FS. As in the case of the $2.1-\mathrm{eV}$ edge (where the top of the d bands provides the initial states), these ransitions originate from general points of the BZ. This explains the lack of response to shear strain. The transitions will of course change under hydrostatic train. The situation is equivalent to the one at the $\because 1-\mathrm{eV}$ edge, where only hydrostatic strain produces a significant change in ϵ_{2}.

Experimental Deformation Potentials

The assignment of the structure observed in $W_{i j}$ and ϵ_{2} has been established in the preceding sections. This information can be used to calculate the deforma-

[^0]

Fig. 12. A blow-up of the imaginary part of the dielectric constant of Cu at room temperature around 4 eV , showing weak structure slightly below 4 eV . The slope of the edge at 4.3 eV and the slope of the background which were used to calculate the deformation potentials of the $E_{F} \rightarrow L_{1}$ transition are also included.
tion potentials of the corresponding transitions from the experiments, i.e., the difference in the deformation potentials of the final and the initial state. Additional knowledge is required to do so, namely, the slope $d \epsilon_{2} / d(\hbar \omega)$ of that part of ϵ_{2} which is responsible for the observed structure in $W_{i j}$ and the selection rules (required for the shear-strain coefficients only). Furthermore, it must be possible to separate that part of $W_{i j}$ which is due to a change of the energy levels from the ones due to modifications of the transition matrix elements M and of the density of states J.

The slope of the edge at 2.1 eV is large; modifications due to a background of transitions other than $L_{3}{ }^{u} \rightarrow \mathrm{FS}$ (e.g., free carrier absorption) will be small. The selection rules are not needed because only hydrostatic strain produces a pronounced change in ϵ_{2}. The changes in M and J produced by a hydrostatic strain will be much smaller than the ones produced by shear strain, in which case they are required by symmetry. ${ }^{7}$ Only $W_{11}+2 W_{12}$ is large at this edge, which shows that changes of M and J contribute very little to $W_{11}+2 W_{12}$. The deformation potential will be given quite accurately by the maximum value of $W_{11}+2 W_{12}$ and by the uncorrected slope of ϵ_{2}.

As discussed above, the $2.1-\mathrm{eV}$ edge is due to nonlocalized transitions; the transitions with lowest energy have \mathbf{k} vectors terminating just outside the neck, but at slightly higher energies transitions with \mathbf{k} vectors located in other parts of the BZ will contribute. The deformation potential determined from the energy shift of the edge will be an average over the deformation potentials of all transitions which contribute. However, the top of the d bands is rather flat, particularly the portion $L_{3}{ }^{u}-Q_{+}$, and it will remain flat if the volume of the crystal is changed. Thus the deformation potentials of transitions contributing to the edge differ only slightly from each other. We therefore no

[^0]: ${ }^{20}$ M. A. Biondi and J. A. Rayne, Phys. Rev. 115, 1522 (1959).

